Displaying 1 - 6 of 6
Dawn's picture

Acute Anterior-lateral STEMI

The Patient:  A 60-year-old man at work. He experienced a sudden onset of substernal chest pain, nausea & vomiting, and dizziness.  He states the pain is a 5 on 1-10 scale.  No cardiac history or current medications. 

The ECGs:  The first ECG, taken at 12:30:05, shows a sinus rhythm with ventricular bigeminy. In some leads, you can see the sinus P waves hidden in the beginnings of the PVCs, so we know the underlying sinus rhythm is about 82 bpm.

There is obvious ST elevation in V1 through V5, which is the anterior wall, an area perfused by the left anterior descending artery.  Remember – the ST elevation sign may also show in the PVCs, but because ventricular beats have secondary ST changes of their own, we should assess only the sinus beats for ST changes. 

There is also obvious ST elevation in Leads I and aVL.  This is the high lateral wall, which is perfused by the circumflex and first diagonal arteries, both proximal branches of the left coronary artery.  So, the involvement of the high lateral wall indicates a proximal lesion in the LCA – not good.  Leads III and aVF have distinct ST depression – this is a reciprocal change reflecting the ST elevation in Leads I and aVL.

Dawn's picture

Onset of Pathological Q Waves

 The Patient:     44-year-old man with chest pain.  Symptoms started over 24 hours ago. The EMS crew recognized an acute M.I. on the ECG and transferred him immediately to a cardiac hospital. They started two I.V.s and gave aspirin enroute. 


ECG No. 1 @17:43:    The rhythm is sinus tachycardia at 118 bpm.  The PR interval is within normal limits at 130 ms, and the QRS is narrow at 84 ms.  The QTCc is 478 ms by the machine’s measurement, but we measured the QT at 303 ms and QTc as 376-419 ms via various methods, which are within normal limits. The QRS frontal plane axis is at 15 degrees, within normal limits.

The ST segments are elevated and mostly straight in Leads V1 through V5, I and aVL. There is mild ST depression in III and aVF.  Very concerning are the pathological Q waves in V1 through V5, indicating loss (death) of myocardial tissue in the anterior wall. 

ECG No. 2 @ 17:53:  The second ECG was performed about 10 minutes later, and V4, V5, and V6 were replaced by V7, V8, and V9.  Reciprocal ST depression is observed in those additional leads. The heart rate is now 128 bpm.  It is notable that pathological Q waves have now appeared in Leads I and aVL. There has been no change in lead placement.  The onset of necrosis in the high lateral wall has shifted the frontal plane axis toward the right extreme of normal, at 86 degrees, and now II, III, and aVF have prominent R waves. Another cause for right axis shift in anterior wall M.I. to consider would be posterior hemiblock. However, that is a diagnosis of exclusion, and the new Q waves explain the axis shift.  It is interesting that the onset of pathological Q waves was captured in these serial ECGs.

Dawn's picture

Anterior-lateral M.I. With Wide QRS

The Patient:  An elderly man presents with chest pain, pallor, diaphoresis and weakness.

The ECG:     The rhythm is normal sinus at a rate of about 76 bpm with normal intervals. The QRS complexes are wide at about .14 seconds (140 ms).  There is ST segment elevation in all precordial leads, except for possibly V6.  The shape of the ST segments in the anterior wall range from coved upward in a “frowning” shape (V1) to very straight (V5 and V6).  There is also ST elevation in aVL with ST straightening in Lead I.  There is ST depression in the inferior leads, II, III, and aVF.  Lead II is equally biphasic while I and aVL are positive, indicating an axis that is shifted slightly to the left.  With his symptoms and this alarming ECG, he was sent promptly to the cath lab.

Interpretation:  The rather obvious ST-elevation M.I. is extensive, covering the entire anterior wall, and extending into the high and low lateral walls . This was confirmed in the cath lab, as the patient had an occlusion of the left anterior descending artery near the bifurcation of the circumflex.  The wide QRS meets the criteria for left bundle branch block (wide QRS, negative QRS in V1 and positive QRS in V6 and Lead I).  However, it doesn’t have the “look” of LBBB with the low-voltage seen in the anterior wall. After the offending artery was opened and stented, the wide complex became narrow and was considered to be an interventricular conduction delay that was due to the ischemia.  The ST depression in the inferior wall is most likely reciprocal.

Dawn's picture

Myocardial Infarction With Non-obstructive Coronary Arteries

This ECG was obtained from a 37-year-old male who was complaining of non-radiating substernal chest pain.  He offered no significant medical history.  He denied taking any medications.  He was hypertensive and bradycardic on arrival in the Emergency Dept. He was alert and ambulatory.  Approximately 20 minutes after first being seen by paramedics, he suffered an episode of ventricular fibrillation in the E.D.  He was resuscitated and sent to the cath lab.  His coronary arteries were without lesions.  We do not know the results of any lab tests, including troponins.

What does the ECG show?  The rhythm is sinus bradycardia at a rate of 48 bpm. The PR, QTc, intervals and QRS duration are normal.  The QRS frontal plane axis is normal and there is good R wave progression in the precordial leads.  There is ST segment elevation in Leads I, aVL, V2, and V3, with reciprocal ST depression in Leads III and aVF.  The ST segments that are elevated retain a relatively “normal” shape, being concave upward. There are no abnormal T wave inversions or pathological Q waves.

Dawn's picture

Simultaneous Occlusions in LAD and Diagonal

This ECG was obtained from a 35-year-old man who was complaining of crushing substernal chest pain which radiated down his left arm for the last ten minutes. He was diaphoretic, and described his pain as a “10” on the 1-10 scale. He got only modest relief from IV fentanyl.

He was transported to a full-service cardiac hospital, where he underwent angioplasty of simultaneous 100% occlusions of his proximal left anterior descending artery and diagonal artery. He was noted to have apical akinesia with a 35% ejection fraction.

He continued to improve following angioplasty, and was discharged home with an external defibrillator vest.

The ECG shows ST elevation in V2, V4, V5, and V6, which makes us suspect that the V2 and V3 wires were switched accidentally.  This reflects damage in the anterior wall of the LV. There is also very marked ST elevation in I and aVL, reflecting damage in the high lateral wall. There is reciprocal ST depression in the inferior leads aVF and III.  Fortunately, there are no pathological Q waves, which would indicate permanent damage from necrosis of the myocardium.

You can see films from his procedure in Heart Art, labeled “Simultaneous Occlusive Lesions in LAD and Diagonal”.

Dawn's picture

Paced Rhythm With Acute Anterior Lateral M.I.

We caution students that the signs of acute M.I. (ST elevation) cannot reliably be seen in cases of wide QRS. This is because, in wide QRS situations like left bundle branch block, ventricular rhythms, or right ventricular pacing, the ST segments will elevate in leads with downward QRS complexes, and depress when the QRS is upright.  These is called discordant ST changes.

In this ECG, a man in his 60's presented with chest pain. His ECG showed AV sequential pacing, with ventricular pacing from the right ventricle. The QRS is 162 ms in duration. He has ST segment elevation in Leads I, aVL, and Leads V2 through V6.

The ST elevations are more pronounced than expected in this paced patient. But, the real clue here is the ST elevation in Leads I, aVL, and V2 - leads that should have ST depression because of their upright QRS complexes, have elevation! This patient was taken to the cath lab and the left coronary artery wass reperfused and stented. For more information about ST elevation in wide QRS complex rhythms, see this LINK.


All our content is FREE & COPYRIGHT FREE for non-commercial use

Please be courteous and leave any watermark or author attribution on content you reproduce.