Displaying 11 - 18 of 18
Dawn's picture

Left Bundle Branch Block With Left Atrial Enlargement

This ECG, kindly donated by Dr. Ahmed from India, is from a 70-year-old man shows a sinus rhythm at 80 bpm with left bundle branch block (LBBB), left atrial enlargement (LAE), and a premature ventricular contraction (PVC). The ECG criteria for LBBB is:  1) Wide QRS  - greater than or equal to .12 seconds;  2) Supraventricular rhythm;  3) QRS that is negative in V1 and positive in Leads I and V6. In leads with a positive QRS, we will see some ST depression, and in leads with a negative QRS, some ST elevation.  This is "normal" for the wide QRS rhythm, and does not indicate injury or ischemia, although it does not rule it out, either.  LBBB is an indicator of cardiac disease, but not specific to one etiology.

There is a PVC seen as the 8th beat from the left, and it gives you a chance to show your students a wide-complex beat that is NOT associated with a P wave and is premature, compared to the wide-complex SINUS beats with LBBB.  The PVC, being wide-complex, also has similar ST changes:  the ST segments and T waves are DISCORDANT with the QRS complexes.

The P waves show some signs of enlargement of the left atrium.  The P waves in Lead II are tall and pointed, and the P waves in V1 are biphasic.  Left atrial enlargement in a patient with LBBB would not be surprising, as both are associated with left ventricular dysfunction.  Patients with these ECG patterns should be thoroughly evaluated for congestive heart failure.  Patients with LBBB, low ejection fractions, and heart failure are treated with cardiac resynchronization therapy, using a pacemaker that paces the atria and each ventricle, synchronizing both the A-V coupling interval and the depolarization of the ventricles for optimum cardiac output.

Dawn's picture

Teaching Series: Atrial Fibrillation With Left Bundle Branch Block

This is a good example of atrial fibrillation with left bundle branch block.  You get two ECGs with this one, because the patient presented to EMS with a fast heart rate, and the rate was slowed with the drug diltiazem.  We do not have any other patient information, unfortunately.

In the first strip, we see a wide-complex tachycardia.  In an emergency situation, with an unstable patient, this rhythm could safely be treated using an emergency ventricular tachycardia (VT) protocol.  In fact, all WCTs should be considered to be VT until proven otherwise.  In most emergency settings, the unstable VT patient would be electrically cardioverted, which will often convert atrial fibrillation as well.  The stable patient with this rhythm would be treated with an antiarrhythmic drug, such as amiodarone.  This may convert or slow down atrial fib.  So, in the initial stages of treatment, differentiating between VT and A Fib is not the first priority.  Assessing the patient's hemodynamic stability and addressing the rate if necessary are the priorities.  

So, how do we know this is NOT VT?  It can be difficult, but in this case, the rhythm, even though fast, is very irregular.   VT is not always perfectly regular, but this irregularly-irregular rhythm points to atrial fibrillation. Also, the pattern of the QRS morphology fits with LBBB.  The criteria for LBBB are:  1) supraventricular rhythm, 2) wide QRS, 3) negative QRS in V1 with positive QRS in Leads I and V6.  If we assume the rhythm is atrial fibrillation, we meet the first criteria.  The other two are self-evident.

After the medication is administered, 10 minutes later, we see the rate slow down.  There is no change in the irregularly-irregular rhythm, and the LBBB pattern remains.  All that has changed is the rate and, hopefully, the patient's symptoms.  This confirms that the original rhythm was not VT.  

Remember, atrial fib lowers cardiac output because there is no P wave - no "atrial kick".  Also, the fast rate associated with new-onset atrial fib often compromises ventricular filling and cardiac output.   LBBB also has a deleterious effect on cardiac output.  Wide QRS complexes indicate that the ventricles are not contracting efficiently and synchronously.  The left ventricle is depolarizing by way of a slow wave of depolarization, rather than all the cells getting the message to depolarize at the same time.  Having these two conditions at the same time can have a very negative effect on cardiac output, leading to CHF.  The first step in treatment often involves simply slowing the rate to normal, which allows for better ventricular filling and decreases the workload on the heart.  Then, the fibrillation and bundle branch block can be addressed.

Dawn's picture

Atrial Flutter With 2:1 Conduction And Left Bundle Branch Block

This ECG is a two-for-one teaching opportunity.  This elderly woman presents with a tachycardia at about 120/min.  We do not have any other information about her complaints or past medical history.

Her ECG shows a wide-complex tachycardia.  The QRS complexes are about 124 ms (.12 sec.) wide.  On the most basic level, we should teach our students to consider ALL wide-complex tachycardias to be ventricular tachycardia until proven otherwise.  This ECG has many clues that it is NOT ventricular tachycardia.  Tiny P waves can be seen in V1, V2, and V3.   But, these are not the only P waves.  The atrial rate in this case is twice the ventricular rate, making the rhythm ATRIAL FLUTTER with 2:1 conduction.  The flutter rate is about 240/minute, slightly on the slow side for AFL.  Atrial flutter with 2:1 conduction is often missed, as every other P wave is hidden.  Look at aVR and Lead II in this case for signs of the regular flutter waves.  It is important to look in all 12 leads for signs of flutter waves in any tachycardia over 120/min.  Occasionally, you will get lucky, and the patient will conduct at a different ratio, such as 3:1 or 4:1, making the flutter waves much more visable.  Sometimes, the atrial flutter becomes apparent during carotid sinus massage or a Valsalva maneuver.

The QRS width, in this case, is due to left bundle branch block.  The criteria for LBBB are:  Wide QRS, Supraventricular Rhythm (in this case, atrial flutter), and a negative QRS in V1 with a positive QRS deflection in Leads I and V6.  The ST changes seen here are typical of LBBB:  ST depression in leads with upright QRS complexes and ST elevation in leads with downward QRS complexes.

 

Dawn's picture

Left Bundle Branch Block

This ECG offers a good example of the left bundle branch block pattern.   * The QRS is wide at 144 ms.  * There is a supraventricular rhythm - in this case, normal sinus rhythm with beat number two a PAC, and a slightly prolonged PR interval.  * The QRS is negative in V1 and positive in V6 and also Lead I.  This satisfies the ECG criteria for left bundle branch block.

The main lesson this tracing offers for beginner or refresher students is the value of multi-lead assessment. Using only one or two leads, you may miss important information needed to correctly interpret the ECG.   In order to meet the LBBB criteria, we must show that there exists a supraventricular rhythm (not ventricular). One easy way to prove the rhythm is supraventricular is the presence of P waves.  In this ECG, P waves are very small, and are invisible in some leads, such as Lead I, aVL, Lead III, and aVF.  P waves can be seen well in Lead II and in the chest leads.  Some helpful hints, if viewing on a computer, enlarge the image to better see the P waves.  Look at the ECG machine's interpretation.  If a numerical PR interval is given, and a P wave axis, then the computer is finding P waves.   If you don't see them in one lead, try others.

For your more advanced students, ST elevation is common in wide-QRS rhythms, occuring in leads that have a negative QRS complex.  Conversely, ST depression will be seen in leads with wide, upright QRS complexes.  This makes the ECG with LBBB very confusing to read.  Evaluation of the ST segments should be deferred to experts.  Most EMS field protocols allow for a STEMI Alert to be called in LBBB only if the LBBB is known to be new-onset and the patient has obvious cardiac symptoms.  You can find many more examples of LBBB on this site, even LBBB with acute MI.   

Dawn's picture

Wide Complex Tachycardia: Left Bundle Branch Block With Subsequent Rhythm Strip

 This wide complex tachycardia has an initial rate of 129/min. It is difficult to discern if P waves are present, although the ECG machine does give us a PR interval. The ECG meets most of the criteria for left bundle branch block: wide QRS, negative QRS in V1, positive QRS in Lead I and V6.The axis is leftward, which is common in LBBB.  However, it is difficult to say for certain that this is a supraventricular rhythm. Later, however, the patient's rate slowed (see top strip), revealing P waves. When the rate slowed, the left bundle branch block pattern remained. That helps confirm the original interpretation of left bundle branch block. Interestingly, the BBB is not rate-related, in that it is still present at the slower rate.

Of course, it would be helpful to have a complete 12-Lead ECG after the rate slowed, and it would also be good to see the onset and/or offset of the fast rhythm, which would help to determine if this is a sinus tachycardia or a paroxysmal supraventricular tachycardia (PSVT).  We do not have clinical data to help us determine if a sinus tachycardia with a rate of around 130 / min. would be appropriate or expected in this patient.

Click on image, or, for best image quality, right click and SAVE image.

 

Dawn's picture

Sinus Rhythm With Left Bundle Branch Block, PVCs, and Fusion Beats

 

This is a great ECG for teaching your students about some of the different causes of wide QRS.  This 89 year old man has a sinus rhythm that is around 100 bpm, and his QRS is widened at 148 ms (.148 sec).  Leads I and V6 are positive, and Lead V1 is negative, meeting the criteria for left bundle branch block. There is a left axis deviation, which is common with LBBB, although it is not always this pronounced, indicating that there is possibly another cause for LAD.  In this ECG, there are also PVCs and probable fusion beats.  The 14th beat is a PVC.  Complexes 1, 6, and 9 are possibly fusion beats. Fusion can be described as an almost simultaneous sinus beat and ventricular beat.  The depolarization waves, one coming from the top of the heart and one coming from the bottom, meet and "fuse" on the ECG.  Fusion beats will have some characteristics of the supraventricular beats and some of the ventricular beats.  They are not significant except that fusion can be said to "prove" the existence of a ventricular pacemaker - either a natural pacemaker or an electronic one.

Do you see anything else interesting in this ECG?  How would YOU describe this rhythm?  Please do not hesitate to add your comments, or ask questions of the experts who contribute to this site.  We will respond quickly to all questions.

Dawn's picture

Left Bundle Branch Block In Patient With Severe Aortic Stenosis

This ECG is from a 91-year-old man who was being evaluated for replacement of his aortic valve, which was severely calcified. It shows a classic LBBB pattern: wide QRS, supraventricular rhythm (normal sinus rhythm with first-degree AV block), a negative QRS in V1, and a positive QRS in Leads I and V6.

Dawn's picture

Intermittent Left Bundle Branch Block

This patient suffered a recent anterior-septal wall M.I., which can be seen as slight ST elevation in V1 and ischemic T wave inversions in V2 through V4. The patient has developed an intermittent left bundle branch block as a result of this M.I.  Every other beat is conducted in a left bundle branch block pattern, as the LBB cannot repolarize in time for each beat.  The criteria for LBBB are:  wide QRS, supraventricular rhythm, and negatively-deflected QRS in V1 with a positive QRS in V6 and Lead I.

Pages

All our content is FREE & COPYRIGHT FREE for non-commercial use

Please be courteous and leave any watermark or author attribution on content you reproduce.