Displaying 21 - 30 of 42
Dawn's picture

Bigeminal Rhythm With Aberrant Conduction

This ECG is a good example of sinus rhythm with aberrantly-conducted PACs.  The tracing was donated to the ECG Guru several years ago by Dr. Ahmed from Sanjiban Hospital in India.  We have no patient data for this tracing. 

The underlying rhythm here is normal sinus rhythm. Most of the parameters – rate, PR interval, and QRS duration – are normal.  The QTc interval, which is the QT interval corrected to a rate of 60 bpm, is prolonged at 568 ms.  We do not know the patient’s clinical condition or medications, so we cannot guess at the reason.  However, a prolonged QTc is associated with an increased risk of Torsades de pointes, a type of polymorphic ventricular tachycardia. 

The first three beats appear the same (Leads I, II, and III).  However, the first R-to-R interval is shorter than the second one.  This could be due to rate variation, a concealed sinus block, or a premature atrial contraction (PAC).   The P wave of the “early” beat, marked #1, looks slightly different from the other P waves in Lead II, but, because of the slow rate, there is no way to be sure without a longer rhythm strip.  After the possible PAC, the rhythm becomes coupled, probably atrial bigeminy, where every other beat is a PAC.  There are several mechanisms that cause grouped beating, but atrial ectopic bigeminy is the most common. Normally, PACs have different-looking P waves compared to the sinus beats.  In this ECG, the P waves are often buried in the preceding T waves, and are hard to evaluate. 

Dawn's picture

Right Bundle Branch Block

This ECG is from a 59-year-old man who was a patient in the Emergency Department with mild chest pain.  He had a history of coronary artery disease.  We have no other information about his medical history, medications, or outcome.

The ECG shows normal sinus rhythm and right bundle branch block.  The ECG criteria for right bundle branch block are: 1)  QRS wide at 120 ms or more (.12 sec. or more).                     2) Supraventricular rhythm.     3) Terminal waves indicating that the right ventricle is depolarizing late.  Because the right bundle branch is blocked, the left ventricle depolarizes first.  The QRS begins in a normal fashion.  The depolarization wave cannot access the right ventricle via the bundle branch, so it travels cell-to-cell across the right ventricle, causing a conduction delay.  This delay in depolarizing the right ventricle is seen on the ECG as a separate, terminal wave on the QRS.  In V1, it is seen as an R' wave, making the QRS have an rSR' pattern in most cases.  In Leads I and V6, there will be a wide, slurred S wave, causing an Rs pattern.  The frontal plane axis can be difficult to determine, as the first part of the QRS is from the left ventricle and the second part is from the right ventricle.

The causes of right bundle branch block are many.  The website, Life In the Fastlane has a good quick reference. 

This patient has a slightly prolonged QTc interval at 469 ms, for which we do not know the reason, lacking clinical information.  The QT interval measures the total time it takes to depolarize and repolarize the myocardium, and it is measured from the beginning of the QRS to the end of the T wave.  The QT interval lengthens naturally in slow rates, and shortens with faster rates.  The QTc has been mathematically corrected to a rate of 60/min.   A good rule of thumb is the QT interval should be less than half the RR interval of the preceding beat. A long QT interval (>500 ms) has been associated with increased risk of torsades de pointes.

Dawn's picture

Second-degree AV Block with 2:1 Conduction and Right Bundle Branch Block

This interesting ECG is a great one for your more advanced students who are ready to discuss the anatomical and physiological differences between the AV blocks, as opposed to just measuring PR intervals.  It shows a sinus rhythm with an atrial rate of 72/minute.  Second-degree AV block causes every other p wave to be blocked, resulting in a pulse rate of 36 beats per minute.  In addition, the ECG shows right bundle branch block, as evidenced by the wide QRS (136 ms), rsR' pattern in V1, and the wide little S wave in Lead I.

When second-degree AVB conducts 2:1, it can sometimes be difficult to determine if the block is Type I (occuring above the Bundle of His), or Type II (occuring at or below the Bundle of His).  This is because two p waves must be conducted in a row to see the tell-tale progressive prolongation of the PR interval seen in Type I (Wenkebach).

Two clues that this block is Type II are:  1) the presence of right bundle branch block.  Type II blocks are sub-Hisian blocks, often in the fascicles, and the right bundle branch block is a fascicle block.  Many Type II AV blocks show signs of right bundle branch block;   2) The non-conducted p waves occur well clear of the refractory periods of the preceding beats.  In Type I blocks, the QRS is eventually dropped because the p wave occurs in the refractory beat of the preceding QRS. Only one beat is missed.  In Type II blocks, p waves that SHOULD have conducted, don't.  Sometimes, more than one p wave in a row will be non-conducted.

Dawn's picture

Right Bundle Branch Block

This is an example of right bundle branch block - with a couple of twists.  It has the usual ECG characteristics of right bundle branch block:  widened QRS (154 ms), supraventricular rhythm (sinus bradycardia), and an rSR' pattern in V1.  In addition, wide little S waves are clearly seen in Leads I and V6.  This secures the diagnosis of right bundle branch block (RBBB).  Each QRS complex in every lead starts off with a very normal appearance, or morphology.  Then, as the right ventricle is depolarized late, an additional wave is "added on".  This is the R-Prime (R') in V1 and the S wave in Leads I and V6.

In most examples of RBBB, you will see the T wave point in the OPPOSITE direction of the terminal wave.  So, V1 should have a NEGATIVE T wave.  In this example, V2 and V3 should have also had negative T waves.  The upright T waves could be considered to have the same significance as inverted T waves in a normal ECG.  

Another interesting aspect to this ECG is the unusual morphology of the terminal S wave in most of the leads.  There appears to be a slight notch.  Lead V2 even appears to have ST elevation.  Perhaps some of our Gurus would comment on this.

This is a good ECG to use to show how the terminal R' and S waves can sometimes be confused with ST elevation and depression.  Lead III has a very flat T wave, and one might make the mistake of calling the R' wave "ST elevation".  The R' does not have the sloping shape of a normal ST segment and T wave.  Also, all the channels on the ECG are run simultaneously.  One needs only to look up at Leads I and II to see where the true T waves are - Lead III's T wave is directly under them.

This is a very good teaching ECG.  We look forward to hearing your comments.

Dawn's picture

Extensive Anterior-lateral M.I. With Right Bundle Branch Block

This ECG depicts an extensive and ultimately, fatal, injury.  There is marked ST segment elevation in Leads V2 through V6 (anterior wall).  There is also ST elevation in Leads I and aVL (high lateral wall).  The ST elevation in aVR is indicative of a very proximal lesion in the left coronary artery, which supplies the anterior wall, including the anterior portion of the septum, the high lateral wall, and, in this case, the low lateral wall.  The inferior leads, II, III, and aVF, show reciprocal ST depression.

This is an old ECG - the computer readings of the rate and intervals is lost, as is the grid.  But the rate here appears to be about 80 bpm and the QRS is widened.  There is a right bundle branch block ECG pattern, which is not surprising given the extensive septal damage.  Normally, the criteria for RBBB on the ECG includes an rSR' pattern in V1 (seen here) and a small, wide s wave in Leads I and V6.  This s wave is not seen here, presumably due to the effects of the ST elevation in those leads.

What matters clinically in a patient like this is not whether there is RBBB or another type of interventricular conduction delay. This patient needs immediate restoration of blood flow through the LCA and intensive medical/nursing care.  As mentioned before, this patient did not survive, in spite of being brought to a hospital.  We do not know the exact mechanism of death or treatment course in this case.

If you are teaching students to use multiple leads in assessing rhythm, this is a great example of how one or two leads can be very misleading.  I have used this ECG's V4 in an excercise illustrating this concept.  Shown V4, many people would call this "AIVR" or "V Tach".  Seen in context with the other leads, it is obvious that we are looking at ST elevation that is as high as the R wave.  Two leads are better than one, and twelve are better than two.

 

 

Dawn's picture

Inferior Wall M.I. and Right Bundle Branch Block

This ECG shows two obvious abnormalities, right bundle branch block AND inferior wall M.I.  It is also a good teaching example of how the terminal wave of RBBB can be mistaken for the ST elevation of M.I.

First, check this ECG to see if it meets the criteria for right bundle branch block:

1)  The QRS will be wide. That is, it will be greater than or equal to .12 seconds (120 ms).  In this case, the QRS is 134 ms.

2)  The rhythm will be supraventricular.  Supraventricular rhythms originate from above the ventricles.  This ECG has P waves before each QRS.  Even though the rhythm is irregular, slowing down during this recorded period, it is a sinus rhythm.

3)  The QRS will have a terminal wave after the "normal" part of the QRS.  This represents the right ventricle depolarizing late.  It is very easily seen in V1, which normally has an rS pattern, and with RBBB has an rSR' pattern, making it appear upright.  V6 and Lead I will show this terminal wave as a wide little s wave.

As mentioned, there is also an acute inferior wall M.I. here.  The ST segment elevation in Leads II, III, and aVF are actually quite subtle.  The flat top of the ST segments gives them away as abnormal, along with the associated ST elevations in V5 and V6, and the reciprocal ST depressions in V1 through V3.  Normally, in IWMI, there will be reciprocal ST depressions in Leads I and aVL, but the elevations they are reflecting are very subtle, and so, therefore, are the depressions. 

The tricky thing about this ECG is that you must look carefully at the inferior wall leads to see the true ST elevation, which, as mentioned, is subtle.  The RBBB terminal wave of the QRS complexes in Leads III and aVF is upright, and is often mistaken for ST elevation.  Remember, ST segments are smooth from the end of the QRS to the peak of the T wave.  See the detail illustration.

This ECG is suitable for your classes from beginner level (rate variation in sinus rhythm) through advanced (clinical significance of RBBB in acute M.I.).  It also offers an example of reciprocal ST changes, and of a situation where the inferior leads II, III, and aVF are related to the low lateral leads V5 and V6 by a shared blood supply.

Dawn's picture

Acute Anterior-lateral M.I. With Right Bundle Branch Block and Left Posterior Fascicular Block

This ECG was obtained from a patient who suffered an occlusion of the left main coronary artery.  ST elevation is seen in Leads V1 through V6, as well as I and aVL.  This is an indicator that the circumflex artery is included in this M.I., and the occlusion is above the bifurcation of the LM and the circ.  The patient also has a right bundle branch block and a left posterior fascicular block.  This bi-fascicular block can be a dangerous complication of acute M.I., as two of the three main bundle branches are no longer functional.

The ECG shows typical ST depression, probably reciprocal to the elevation, in the inferior leads.

The right bundle branch block is diagnosed by the following criteria:  1) Wide QRS;  2) Supraventricular rhythm; and 3) rSR' pattern in V1 with Rs with a wide little s wave in Leads I and V6.

The left posterior fascicular block is diagnosed by right axis deviation and by ruling out other causes of right axis deviation.  In RAD, Lead III will have a taller positive ( R ) wave than Lead II, and a negative Lead I.

This type of occlusion is often called the "Widow Maker", and requires very rapid intervention to restore blood flow and prevent complicatons.  If there is good news, it is that there are no pathological Q waves, which would indicate necrosis, and this patient was taken quickly to a full-service cardiac center with interventional cath labs and open heart surgery available.

Dawn's picture

Atrial Pacing With Right Bundle Branch Block

No instructor's collection should be without an atrial paced rhythm OR a right bundle branch block.  Here, you get both.  First, the atrial pacing.  This patient had a sinus node problem, but his AV conduction system was functional (if not perfect).  At this time, he is able to conduct impulses from the atria to the ventricles.  What he cannot do is reliably produce the impulse in his atria.   So, this pacemaker is currently pacing the right atrium, producing a paced "P" wave, which is then conducted to the ventricles.  The fifth beat on the strip shows a "native" beat - one produced by the patient.  No P wave is seen, so it is presumed to be a junctional beat.

As for conduction through the ventricles, there is a right bundle branch block.  The left bundle branch is ensuring that the ventricles receive the depolarization "message", and the ventricles are depolarizing and contracting.  However, the right ventricle gets the message a little late, since is arrives from the left ventricle, and not through a functioning right bundle branch.  This produces a terminal wave on each QRS that represents this delayed depolarization of the right ventricle.  In leads oriented to the left side of the heart, like I and V6, it is seen as a wide little S wave.  In V1, which is oriented to the patient's right, we see an R prime (R'), producing the easily-recognizable rSR' pattern of RBBB.

For your more advanced students, this patient has atypical T waves for RBBB.  Normally, the T waves axes should be OPPOSITE that of the terminal portion of the QRS.  So, Lead V1 correctly shows an inverted T wave, since the R' is a positive deflection.  There are inverted T waves in Leads III, aVF (II is biphasic), as well as in V4, V5, and V6.  We expected upright T waves here. Because we do not have clinical information for this patient, we will call them "non-specific" T wave changes, remembering that inverted T waves can be a sign of ischemia.

ALSO:  As noted in Dave Richley's comment below, there is a left axis deviation, with a negative Leads II, aVF and III, and a positive I and aVL.  This  indicates left anterior fascicular block, which is rather common with RBBB, since the right bundle branch and the left anterior fascicle share a blood supply. So, this person as a "bi-fascicular block". 

 

Dawn's picture

Right Bundle Branch Block

This ECG shows a normal sinus rhythm at 73/min. and a right bundle branch block.  The diagnostic characteristics of RBBB are:  wide QRS (greater than .12 sec.), supraventricular rhythm (in this case NSR), and an rSR' pattern in V1 with a small, wide S wave in Leads I and V6.  The R' and small s waves represent the right ventricle depolarizing slightly AFTER the left ventricle.  In fact, in RBBB, each lead should look pretty normal at first, with a terminal right ventricular depolarization wave added to each QRS complex.  This is because the left ventricle depolalrizes normally.  In this patient, R waves progress fairly soon in the precordial leads (V1 through V2).  It is not known in this case if it is due to poor electrode placement or patient causes.

Dawn's picture

Right Bundle Branch Block With Left Posterior Fascicular Block

This is a good clear example of right bundle branch block with left posterior fascicular block.  The RBBB is diagnosed by the following criteria:  wide QRS (.12 sec), supraventricular rhythm (NSR), an rsR' pattern in V1, and wide little s waves in I and V6.  The LPFB is inferred by the right axis deviation (Lead III QRS is a bit taller than Lead II and Leads I and aVL are negative), and the fact that there is no other obvious cause for right axis shift noted in this patient.  This constitutes a BIFASCICULAR BLOCK.  The ventricles are being depolarized by way of the anterior fascicle.  In addition, there are slight ST elevations in many leads, with an upward coving in the anterior-septal leads (V1, V2, V3).  Depending upon the patient's history and presentation, this could represent a recent M.I. or pending issues. The borderline first-degree AV block may be of concern in this patient, since first-degree AVB is associated with progression of bifascicular block to complete heart block.  Reference:  Ann Card Anaest, 2010 Jan-Apr;13(1):7-15. doi: 10.4103/0971-9784.58828

 

Pages

All our content is FREE & COPYRIGHT FREE for non-commercial use

Please be courteous and leave any watermark or author attribution on content you reproduce.