Displaying 11 - 20 of 21
Dawn's picture

ECG Basics: Atrial Fibrillation With A Rapid Ventricular Response

This ECG rhythm strip has all the hallmarks of atrial fibrillation:  the rhythm is irregularly irregular and there are no P waves.  The rate is about 150 beats per minute. There is no P wave because the atria are being irregularly depolarized by many ectopic pacemakers at once, causing the atria to "quiver".  This patient has new-onset atrial fib, and has been medicated with a calcium channel blocker.  The rate shows signs of slowing, but has not reached the target rate for this patient of less than 80 bpm.

At the onset of atrial fib, the rate is usually fast, because the AV node is being bombarded by numerous impulses from the atria.  The impulses arrive irregularly, and with different "strengths".  The AV node conducts as many impulses as it is able to, usually resulting in a rate over 110-120 bpm.  Medications can affect the rate, of course, and we use medications to slow AV conduction and allow a more normal heart rate.  

There are many methods of correcting atrial fib, not always with permanent success. Some patients tolerate this rhythm well as long as the rate is kept in check.  But others suffer a loss of cardiac output due to the loss of "atrial kick", which is the forceful filling of the ventricles by the contracting atria.  This loss of cardiac output can severely impair some people, making it necessary to try to convert the atrial fibrillation.  In addition, people living with atrial fib must be anticoagulated, as the loss of forceful emptying of the atria can cause collections of blood clots which can break free and embolize.

Dawn's picture

ECG Basics: Atrial Fibrillation With a Rapid Ventricular Response

This rhythm strip is recorded in two simultaneous leads, which is always preferable to one single lead.  It is a good example of atrial fibrillation with a rapid ventricular response.  Atrial fib that has not been treated will usually have a rapid ventricular rate.  This reflects the ability of the AV node to conduct a tachycardia, within limits.  The natural slow conduction of the AV node allows it to act as a "filter", preventing the huge numbers of impulses generated by the atrial fibrillation from reaching the ventricles.  In this case, about 140 beats per minute are able to make it through the AV node into the ventricles.   In some patients, preexisting cardiac conditions such as valve insufficiency or CHF may make this rate dangerous for the patient.  The rate may lower cardiac output in some people, and this must be considered in light of the fact that the loss of P waves in atrial fib also lowers cardiac output significantly.

Dawn's picture

Normal Sinus Rhythm With PACs Misdiagnosed As Atrial Fibrillation

This patient was diagnosed by the rescue crew as having atrial fibrillation, based on the fact that they thought the rhythm was irregular, and they could not see P waves.  They also noted a wavy baseline, and considered it to be fibrillatory waves.  In reality, the underlying rhythm is regular, with some PACs (regularly irregular). The P waves are small and hard to see in the baseline artifact.  We have marked the P waves in Lead I with small dots.  

It pays to look at multiple leads, reduce artifact as much as possible, and look at the strip for evidence of an underlying rhythm.  

It is not shown here, but the ECG machine is often able to show that the P waves are present by giving a PR interval and P wave axis in the diagnostics.

Dawn's picture

ECG Basics: Atrial Fibrillation With Complete AV Block

This patient has an underlying atrial fibrillation with complete heart block and an idioventricular escape rhythm.  She was treated successfully with a permanent implanted pacemaker.

Dawn's picture

Acute Inferior Wall M.I. With Right Ventricular M.I. and Atrial Fibrillation

This 31-year-old man presented to the Emergency Dept. complaining of chest pain, shortness of breath, and nausea. His heart rate on admission was 120 - 130 bpm and irregular, and the monitor showed atrial fibrillation. His rate slowed with the administration of diltiazem. His 12-lead ECG shows the classic ST elevation of inferior wall M.I. in Leads II, III, and aVF. This patient also had JVD, bibasilar rales, orthopnea, and exertional dyspnea, signs of CHF. He had no history of acute M.I., CHF, or atrial fibrillation. He offered no history of drug use or medications.

This ECG is very useful for the basic student, in that the ST elevations are readily seen, and the atrial fib is definitely irregularly-irregular. For the more advanced student, the ST depression in V2 indicates posterior wall injury, while the flat ST segment in V1 indicates a possible right ventricular M.I.  While the posterior wall is trying to depress the ST segment, the right ventricle is trying to elevate it, resulting in flattening. Also, Lead III has a greater STE than Lead II, which has been shown to be a reliable indicator of RV infarction.  This should be confirmed with a V4 right, or all chest leads done on the right side. Right ventricular injury has been shown to increase mortality, and it also requires different management of hemodynamics.

Dawn's picture

ECG Challenge: Grouped Beating - Double Tachycardia - ANSWER

This series of strips was donated by Arnel Carmona, and was taken from a patient admitted to the hospital for a urinary tract infection.  No other history is known.   On close examination of this rhythm what do we see?

Strip 1:   Narrow-complex tachycardia with NO apparent P waves.

Strip 2:   Some irregularity, with long regular groups and still NO P waves.

Strips 3 & 4:  Grouped beating.

Strip 5:   A narrow-complex rhythm that is approximately ½ the rate of Strip 1. 

When grouped beating is seen, one should always suspect Wenckebach conduction.  Wenckebach conduction (progressively longer conduction times through the A-V conduction system) can occur in rhythyms other than sinus rhythm.  Without P waves and PR intervals, GROUPED BEATING is our major clue to Wenckebach conduction. 

This patient has an underlying atrial fibrillation – hence no P waves.  Fine fibrillatory waves can be seen, but artifact can cause the same appearance.  So, why is there no irregular irregularity?  There is another rhythm at work here along with the atrial fibrillation.  Junctional tachycardia is seen in Strip 1.  When two tachycardias coexist, one from above the AV junction, and one from below, the rhythm can be called a “double tachycardia”.  This particular combination often happens in patients with digitalis toxicity. 

In some cases, a complete heart block at the level of the atrial conduction fibers or the AV node causes  two rhythms to operate independently.  Any supraventricular rhythm, including atrial fib, can occur with a complete heart block, in which case we would see an “escape” rhythm.  Escape rhythms are usually slow, either idiojunctional (40-60 bpm) or idioventricular (< 40 bpm).  

 Let’s look at each of the strips in detail.  We will begin with the hypothesis that this is atrial fibrillation with concurrent junctional tachycardia at around 150 bpm.  I will include laddergrams to illustrate my view of what is happening. 

Dawn's picture

ECG Challenge: Grouped Beating - Double Tachycardia

This very interesting set of strips was donated to the ECG Guru by Arnel Carmona, well-known to many of you as the Administrator of the blog, "ECG Rhythms" and the FB page by the same name.  He is a frequent contributer to the FB page, "EKG Club", and is an ECG Guru!  This set of strips was previously posted to his blog and to the EKG Club.  In case you haven't already seen it, we will withhold the interpretation for now to give everyone a chance to comment.  In one week, we will post the interpretation.

SEE THE INTERPRETATION AT THIS LINK

*********************************************************************************************

Dawn's picture

Teaching Series: Atrial Fibrillation With Left Bundle Branch Block

This is a good example of atrial fibrillation with left bundle branch block.  You get two ECGs with this one, because the patient presented to EMS with a fast heart rate, and the rate was slowed with the drug diltiazem.  We do not have any other patient information, unfortunately.

In the first strip, we see a wide-complex tachycardia.  In an emergency situation, with an unstable patient, this rhythm could safely be treated using an emergency ventricular tachycardia (VT) protocol.  In fact, all WCTs should be considered to be VT until proven otherwise.  In most emergency settings, the unstable VT patient would be electrically cardioverted, which will often convert atrial fibrillation as well.  The stable patient with this rhythm would be treated with an antiarrhythmic drug, such as amiodarone.  This may convert or slow down atrial fib.  So, in the initial stages of treatment, differentiating between VT and A Fib is not the first priority.  Assessing the patient's hemodynamic stability and addressing the rate if necessary are the priorities.  

So, how do we know this is NOT VT?  It can be difficult, but in this case, the rhythm, even though fast, is very irregular.   VT is not always perfectly regular, but this irregularly-irregular rhythm points to atrial fibrillation. Also, the pattern of the QRS morphology fits with LBBB.  The criteria for LBBB are:  1) supraventricular rhythm, 2) wide QRS, 3) negative QRS in V1 with positive QRS in Leads I and V6.  If we assume the rhythm is atrial fibrillation, we meet the first criteria.  The other two are self-evident.

After the medication is administered, 10 minutes later, we see the rate slow down.  There is no change in the irregularly-irregular rhythm, and the LBBB pattern remains.  All that has changed is the rate and, hopefully, the patient's symptoms.  This confirms that the original rhythm was not VT.  

Remember, atrial fib lowers cardiac output because there is no P wave - no "atrial kick".  Also, the fast rate associated with new-onset atrial fib often compromises ventricular filling and cardiac output.   LBBB also has a deleterious effect on cardiac output.  Wide QRS complexes indicate that the ventricles are not contracting efficiently and synchronously.  The left ventricle is depolarizing by way of a slow wave of depolarization, rather than all the cells getting the message to depolarize at the same time.  Having these two conditions at the same time can have a very negative effect on cardiac output, leading to CHF.  The first step in treatment often involves simply slowing the rate to normal, which allows for better ventricular filling and decreases the workload on the heart.  Then, the fibrillation and bundle branch block can be addressed.

Dawn's picture

ECG Basics: Atrial Fibrillation With Rapid Ventricular Response

This is a good rhythm strip to use to illustrate how atrial fibrillation can almost look regular when the rate is fast.  Students should be taught how to "march out" the rhythm for regularity.  It is always a good idea with atrial fib to take a longer strip, looking for the inevitable "gaps" in the R-to-R intervals.  Also, as your students progress, a 12-lead ECG is invaluable to really search for P waves.  Even two or three simultaneous leads are better than just one.

Dawn's picture

ECG Basics: Atrial Fibrillation With A Controlled Ventricular Response

Atrial fibrillation with a controlled ventricular response is often considered to be atrial fib that has been controlled with medication.  While this is often true, it is possible to see atrial fib with a ventricular rate between 50 and 100 bpm in a patient who has not been treated.  The hallmark signs of atrial fib are:  no P waves and irregularly-irregular rhythm.

Multiple, simultaneous leads are advised to be sure there are no P waves, and a long rhythm strip is often needed to prove the irregularly-irregular rhythm.  Remember, even though this rate is adequate (about 90 bpm), the loss of P waves means no "atrial kick".  The atria are not filling the ventricles with a forceful pumping action. Patients can lose a significant percentage - up to 25% - of their cardiac output because of this.  Coupled with the risk of stroke from the formation and embolization of blood clots from the sluggish circulation in the atria, it is much preferable to have sinus rhythm at the same rate.

Pages

All our content is FREE & COPYRIGHT FREE for non-commercial use

Please be courteous and leave any watermark or author attribution on content you reproduce.