Displaying 21 - 30 of 63
Dawn's picture

ECG Basics: Atrial Fibrillation With a Rapid Ventricular Response

This rhythm strip is recorded in two simultaneous leads, which is always preferable to one single lead.  It is a good example of atrial fibrillation with a rapid ventricular response.  Atrial fib that has not been treated will usually have a rapid ventricular rate.  This reflects the ability of the AV node to conduct a tachycardia, within limits.  The natural slow conduction of the AV node allows it to act as a "filter", preventing the huge numbers of impulses generated by the atrial fibrillation from reaching the ventricles.  In this case, about 140 beats per minute are able to make it through the AV node into the ventricles.   In some patients, preexisting cardiac conditions such as valve insufficiency or CHF may make this rate dangerous for the patient.  The rate may lower cardiac output in some people, and this must be considered in light of the fact that the loss of P waves in atrial fib also lowers cardiac output significantly.

Dawn's picture

ECG Basics: Sinus Rhythm With Ventricular Bigeminy

This rhythm strip offers two leads taken at the same time, Lead II and Lead V1.  The Lead II strip may not look "typical" to a beginning student, because the sinus beats are very small and biphasic.  This is due to an axis shift, which cannot be evaluated without more leads.

One of the best teaching opportunities in this strip is the concept of "underlying rhythm" with ectopy.  The underlying rhythm here is sinus.  But there are sinus P waves which are hidden, making the sinus rate twice what it appears to be.  The P waves are invisible in the Lead II strip, with baseline artifact making them even harder to see.  But in V1, we are able to find them at the end of the PVCs' T waves.  The sinus rhythm is a bit irregular toward the end of the strip.  There are probably many things a more advanced practitioner could say about this strip, but it usually requires more than one or two leads to do a complete evaluation.  For your basic student, it is a good example of sinus rhythm with ventricular bigeminy.

Dawn's picture

ECG Basics: Sinus Tachycardia

This is a good teaching strip on many levels.  At the BASIC level, we see a strip that clearly meets all the criteria for sinus tachycardia:  a regular rhythm over 100/min. with P waves that look normal and all look alike.  The rate is 110 per minute.  The PR interval is just at the upper limits of normal at .20 second, or 200 ms.  The QRS complex is within normal limits, but slightly wide at .10 seconds.

This strip is good for teaching rate determination by several different methods.  It is helpful that QRS complexes 1, 5, and 10 fall on the dark lines of the paper.

This is a Lead II rhythm strip, and it is helpful to show students that not ALL Lead II strips produce an upright QRS complex.  Of course, correct lead placement should be confirmed.  In this particular case, the patient had suffered an anterior - septal wall M.I., and has a left anterior hemiblock, also called left anterior fascicular block.  This shifts the frontal plane axis to the left, causing Lead II to have a negative QRS.  Axis can't be accurately determined from one lead, but axis shift explains the negative QRS in this strip.

Dawn's picture

ECG Basics: Atrial Fibrillation With Complete AV Block

This patient has an underlying atrial fibrillation with complete heart block and an idioventricular escape rhythm.  She was treated successfully with a permanent implanted pacemaker.

Dawn's picture

ECG Basics: Sinus Bradycardia With A Premature Atrial Contraction

This strip shows an underlying sinus bradycardia with a rate less than 40/min.  There is one "premature" beat, which can be considered to be ectopic, because it interrupts an otherwise regular rhythm.  The interesting thing is that the premature beat is not terribly early - it is about 740 ms from the previous beat.  If all the beats were spaced like this, the heart rate would be about 84/min.  There is probably an element of "escape" here, in that the ectopic beat is able to express itself due to the slow rate.  A faster sinus rate would override this ectopic focus.  So, we could view this early beat as a help, rather than a problem.  The most important consideration here is to address the cause of the bradycardia, and treat appropriately. 

Dawn's picture

ECG Basics: Sinus Rhythm With A Premature Beat

This strip offers something interesting for both your basic-level students and for your more advanced students.  First, it is a good example of sinus rhythm with a premature beat.  The PR interval was measured by the machine at .21 sec (218 ms).    The premature beat is supraventricular - that is, it is not a PVC.  Because of the slightly long PRI in this strip, it's P wave COULD be buried in the preceding T wave.  That would make this a premature atrial contraction (PAC).  

For discussion with your more advanced students, the P wave could, instead, be retrograde, and occurring during the QRS or slightly after it.  That would make the premature beat junctional, or an atrial echo beat. The origin of the premature beat is mostly academic - there is likely no clinical need to determine the origin.  

In looking for clues as to the origin of the premature beat, we would scrutinize the premature beats for "hidden" P waves.  Upright and before the premature beat would indicate a PAC.  Negative P waves before, during, or after the premature QRS would indicate PJCs.  In this strip, the T waves just before the premature beats are slightly deeper than the other T waves.  This could indicate atrial "echo", or reciprocal beats, which requires the presence of dual junctional pathways, in which the impulse turns around, reenters the atria, and causes a new beat.  It can be helpful to look at multiple leads (the more the better) in your search for P waves.  For a look at this patient's 12-lead ECG, go to this link.  

The P wave of a premature beat often penetrates the SA node and "resets" it, causing the next normal beat to occur after a "normal" R-to-R interval from the premature beat. This fact can help us find "hidden" P waves, as well.

Another interesting feature of this strip for your students who are interpreting 12-Lead ECGs, is that this ECG shows the criteria for left ventricular hypertrophy.  See the link above for the 12-lead and discussion.

 

 

 

 

 

 

Dawn's picture

ECG Basics: Junctional Rhythm

This is an example of a junctional rhythm that is slower than what is considered "intrinsic rate" for the junction.  The rate is around 30 bpm.  We know this is a "supraventricular" rhythm because of the narrow QRS.  Junctional beats travel to the ventricles via the bundle branches, which provides very fast conduction, resulting in a narrow QRS complex.  The P waves can be seen at the end of each QRS.  They are upside-down in this Lead II rhythm strip, indicating retrograde conduction from the junctional pacemaker to the atria.

Clinically, the important thing when we encounter such a slow rate is to evaluate the patient's response to the rate.  If the patient is hypoperfused (pale, decreased level of consciousness, low BP), we need to act to increase the rate, regardless of the cause of the bradycardia.

Dawn's picture

ECG Basics: Normal Sinus Rhythm With Premature Ventricular Contractions

This ECG shows an underlying rhythm of normal sinus rhythm at a rate of 80 / min.  There are two premature ventricular contractions (PVCs).  The sinus rhythm actually continues uninterrupted, causing a “compensatory pause”.  If you march out the P waves, you may even see hints of the hidden P waves in the ST segments of the PVCs.  The P waves that occur in the ST segments of the PVCs land in the refractory period of the ventricles, and so are unable to continue into the ventricles and cause a QRS. 

 

It is also permissible to call these beats “ventricular premature beats (VPBs)” or “ventricular premature complexes (VPCs)”.  

Dawn's picture

ECG Basics: Paroxysmal Supraventricular Tachycardia Treated With Adenosine

This series of ECG rhythm strips shows a paroxysmal supraventricular tachycardia successfully treated with adenosine.  The patient was complaining of a rapid heart rate and palpitations, but was hemodynamically stable.  It is not known whether any parasympathetic stimulation, such as a Valsalva maneuver or carotid sinus massage, was used initially.   

The first rhythm strip shows a PSVT, presumably AV nodal reentrant tachycardia, at a rate of about 215 per minute.  (We originally indicated a rate of 240 per minute, but this was a typo). Using the simplist method of determining rate, the six-second method, we see 21, but almost 22, QRS complexes in six seconds. Differential diagnosis would include sinus tachycardia, but this rate is too fast for sinus tach, especially in a resting patient.  Also, sinus tach would slow down as the patient is rested or made more comfortable, and this rate did not vary.  Also, when confronted with a supraventricular tachycardia, one should also consider atrial flutter and atrial fibrillation.  This is somewhat slow for atrial flutter with 1:1 conduction, and that rhythm is much more rare than AVNRT. It is too regular for atrial fibrillation.  So, we are left with the probable diagnosis of paroxysmal supraventricular tachycardia.  The “paroxysmal” part is presumed since AVNRT has an abrupt onset, and the patient’s symptoms started suddenly. 

The second rhythm strip shows what happened after adenosine was administered.  The patient received first a 6 mg dose, rapid IV push.  When that was not effective, he received 12 mg rapid IV push.  The rhythm strip is typical of the first minute or so after adenosine administration.  Adenosine can cause transient AV blocks, escape rhythms, and ectopic irritability.  The half-life of adenosine is only 6 seconds, so the dysrhythmias and uncomfortable symptoms are short-lived.  In this strip, we see frequent PVCs and runs of V tach.  

Dawn's picture

ECG Basics: Paroxysmal Supraventricular Tachycardia

This two-lead rhythm strip clearly shows the transition from normal sinus rhythm to a paroxysmal supraventricular rhythm.  In this case, the arrhythmia is AV nodal reentrant tachycardia, AVNRT.  The rate of the first rhythm, NSR, is around 75 per minute.  The fourth beat on the strip is a PAC which initiates the paroxysm of tachycardia lasting 12 beats.  The arrhythmia terminates spontaneously at that point.  The tachycardia rate is about 150/min.

The topic of supraventricular tachycardias can be a very complex one to teach.  For an excellent example of a concise lesson geared toward Primary Practice physicians, go to Dr. Grauer's VIDEO - Part III of his Arrhythmia series.

To cover the important points for the beginner-level student:

  *  It can be difficult to determine a rhythm is SVT if the rhythm is near 150 bpm and you DON'T see the beginning or end of the arrhythmia.  If the onset (or offset) is sudden, then this is not a sinus rhythm.  The sinus node speeds and slows more gradually - it doesn't change rates in one heartbeat.  This strip has an excellent view of BOTH the onset and the offset.

  *  The faster the rate, the more likely we are looking at a PSVT rather than sinus rhythm.  If a sinus tachycardia exists, we can almost ALWAYS see the reason for it in the patient's clinical situation.  We may see fever, dehydration, bleeding, fear, pain, exercise.  Therefore, a patient at rest with a rate of 150 would be suspect for PSVT.  A patient on a treadmill for 5 minutes would be considered to have a sinus rhythm.

  *  Any patient with a rate around 150 per minute should be evaluated for ATRIAL FLUTTER with 2:1 conduction.  Atrial flutter often conducts at that ratio, because a rate of 150 is fairly easy for the AV node to conduct, whereas the instrinsic rate of atrial flutter (250-350) is not.  A 12-lead ECG makes it easier to search for tell-tale flutter waves.

Pages

All our content is FREE & COPYRIGHT FREE for non-commercial use

Please be courteous and leave any watermark or author attribution on content you reproduce.