Displaying 11 - 20 of 66
Dawn's picture

ECG Basics: 2:1 AV Block

Second-degree AV block can either be Type I (Wenckebach) or Type II.  In either case, some P waves are conducted to the ventricles, and some are not. Type I blocks usually occur in the AV node, and are often benign. Type II blocks are more often "sub-Hisian", or fascicular blocks, and are more likely to progress to higher levels of AV block and bradycardia.  When a second-degree AVB is conducted in a 2:1 ratio, it is difficult to differentiate Type I from Type II.  Features that favor the diagnosis of Type I are narrow QRS complex and the non-conducted P waves land on the previous T waves - during the refractory period of the ventricles.

Type II blocks are more likely to have a wide QRS with a bundle branch block morphology.  That is because Type II blocks often reflect serious fascicular disease.  A typical Type II block is a persistent bifascicular block (ex: RBBB and left anterior hemiblock)) with an intermittent block in the third fascicle.  Another way to think of it is an intermittent tri-fascicular block. If that one remaining fascicle stops conducting, the patient will be in complete heart block.

Signs of Type II blocks include the wide QRS and also two or more non-conducted P waves in a row.  Also, P waves that are "out in the open", away from the refractory period, but fail to conduct are an ominous sign.

One strategy for reacting to a 2:1 block is to first assess the ventricular rate (54 bpm in this example).  Determine if it is adequate for the patient's hemodynamic stability.  If not, act to increase the rate.  Otherwise, it may be prudent in the stable patient to watch the rhythm strips for a while.  Sometimes, two p waves in a row will conduct - unmasking either progressive prolongation of the PR interval (Type I) or stable PR intervals (Type II). 

The patient in this example was having an inferior wall M.I.  The ST elevation will not always show up on a monitor strip, as it does here.  A 12-lead ECG is the minimum standard for evaluating for coronary artery disease and acute M.I.  It is possible that the 2:1 block will disappear when the atrial rate (about 108 here) is slowed.

Dawn's picture

ECG Basics: Ventricular Tachycardia

V tach is identified by:  wide QRS complexes (>.12 seconds), rate faster than 100 bpm.  In MONOMORPHIC V tach, all QRS complexes look alike.  There are other mechanisms of wide-complex tachycardia, but they can be difficult to differentiate from a single rhythm strip.  All WCT should be treated as V tach until proven otherwise.

Dawn's picture

AV Block of Undetermined Type

This strip was obtained from a woman who presented to her doctor’s office with hypertension. While there is some artifact in the baseline, it is possible to determine the presence of P waves, thanks in part to having two leads to assess.  We have provided an unmarked version of the strip for you to use, and also a marked version for the sake of this discussion.

The underlying rhythm is sinus bradycardia, at about 60 bpm, but with some slight variation in the P to P intervals (about 920 ms to 1040 ms). Because of the artifact, it is difficult to determine the exact P to P intervals, and the exact morphology of the P waves. So, we can’t say for sure that the P waves are all alike.

The AV block occurs at a 3:1 ratio.  That is, for every three P waves, one is conducted and produces a QRS complex.  When the P waves are not conducted, an escape rhythm occurs.

The escape rhythm occurs at an escape interval of about 1720 ms.  In other words, when a QRS does not occur by that time, the escape beat is produced.  It appears to be from the AV junction, in spite of the slow rate, because the escape QRSs look like the sinus conducted QRSs.  Both sinus and junctional rhythms are conducted along the bundle branches and produce the same QRS morphology.  The QRS complexes are approximately .08-.10 seconds wide.  Note that QRS complexes numbered 3, 5, and 7 have a P wave fused to the beginning of the QRS, making the QRS look wide when it is not.   A junctional escape rhythm results from AV block in the AV node, as the junction is the first available pacemaker below the AVN. 

This patient was scheduled for a treadmill stress test in her doctor’s office, which was cancelled. She had no cardiac symptoms at the time of the ECG, except the above-noted hypertension.  Unexplained bradycardia, especially when accompanied by AV node blocks, should trigger an assessment for inferior wall M.I., since the inferior wall of the LV shares a blood supply with the SA and AV nodes in the majority of people.

Dawn's picture

ECG Basics: Accelerated Junctional Rhythm Overriding Normal Sinus Rhythm

This strip shows a junctional rhythm at a rate of 110 beats per minute. The QRS complexes are slightly wide at .10 seconds (100 ms), and they are within the parameters for supraventricular rhythm. The term, "junctional tachycardia" could be used, also, but this is not likely a "reentrant" junctional tachycardia, which would be fast, regular, and have a sudden onset. That type of junctional tachycardia is a PSVT.   In this strip, we can see the underlying sinus rhythm in P waves that appear to pop up randomly.  However, if you march out the P waves, you will find that they are regular, at a rate of about 90 per minute.  The junctional rhythm has overrun the sinus rhythm.  Most of the P waves cannot conduct due to where they have landed - in the refractory period of the QRS.  The exception might be the P wave after the fifth QRS.  The sixth QRS might be conducted from that P wave.

When accelerated junctional rhythm is encountered, you should suspect DIGITALIS TOXICITY - the classic dysrhythmia associated with digitalis toxicity is accelerated junctional rhythm. Other causes in adults could be beta-agonist drugs such as adrenalin, cardiac infection, ischemia, or surgery.
 

Dawn's picture

ECG Basics: Onset of Atrial Fibrillation

This strip shows the onset of atrial fibrillation.  A fib can be "paroxysmal," meaning that it has a sudden onset, but then stops spontaneously, usually within 24 hours to a week.  A fib can also be classified as "persistent", meaninging that the a fib lasts more than a week.  It can stop spontaneously, or be halted with medical treatment.  "Permanent" a fib is a fib that is resistent to treatment.  

The first three beats in this strip represent sinus rhythm at 75 beats per minute.  At the onset of atrial fibrillation with beat number four, the rhythm becomes irregularly irregular, and the rate is around 140-150 bpm. We can expect new-onset a fib to have a fast ventricular rate, as the atria are sending hundreds of impulses to the AV node every minute. The AV node will conduct as many of those impulses as it can to the ventricles.  Most AV nodes can easily transmit 130-160 bpm.  In a fib, the atria are quivering, not contracting. Because of this fibrillation of the atrial muscle, a fib has no P waves, and therefore, no "atrial kick".  The contribution of the atria to cardiac output (25-30%) is lost. An extremely fast rate can also lower output and overwork the heart, so one treatment goal for a fib is to lower the rate.  This can be done independently of attempts to convert the rhythm.

During a fib, blood clots can form in parts of the atria, especially the left atrial appendage.  If sinus rhythm is restored after these thrombi form, they can embolize and travel to the brain, causing stroke.  Before electively converting atrial fib to a sinus rhythm, the patient may need to be anticoagulated.

 

Dawn's picture

ECG Basics: Second-degree AV Block With Characteristics of Type I and Type II

This strip shows a second-degree AV block.  During most of the strip, 2:1 conduction is present.  At the beginning, however, two consecutive p waves are conducted, revealing progressive prolongation of the PR interval.  This usually represents a Type I , or nodal, block:  progressive refractoriness of the AV node.   However, the wide QRS ( possibly left bundle branch block), and the fact that the non-conducted p waves are "out in the open" where they should have conducted, points to Type II - an intermittant tri-fascicular block. Wenckebach periods in patients with LBBB can be caused by progressive conduction delay in the right bundle branch.

Dawn's picture

ECG Basics: Sinus Bradycardia

Sinus bradycardia.  This strip meets the criteria of:  regular rhythm, rate less than 60 bpm (40 bpm in this case), regular P waves before every QRS.  Sinus bradycardia can have many causes from a completely normal variation to a malfunction of the sinus node.  In some cases, enhanced parasympathetic tone causes sinus bradycardia.  Well-conditioned athletes typically have sinus bradycardia. Treatment depends upon the cause and the patient's response to the rate.  If the rate does not cause hemodynamic impairment, treatment may not be necessary.

Dawn's picture

ECG Basics: Sinus Tachycardia vs. PSVT

Narrow-complex tachycardias can be very confusing to students of basic-level ECG.  There are very many rhythms that fall into the broad category of narrow-complex tachycardia.  We usually further divide them into sinus tachycardia and other "supraventricular tachycardias".  The basic student will want to make this distinction, as well as be able to differentiate atrial fib and atrial flutter from the other SVTs.  The more advanced student will want to go into more detail about which mechanism for supraventricular tachycardia is present.

Just the basics, please.   When the tachycardia is regular, it is most important to determine whether it is a SINUS TACHYCARDIA or a SUPRAVENTRICULAR TACHYCARDIA.  (Yes, we are aware that sinus rhythms are supraventricular, but the term "supraventricular tachycardia" or "SVT" is usually reserved for the fast, regular rhythms that are not sinus.)  So, what clues will be most helpful to our beginner students?

Rate    SVTs tend to be faster than sinus tachycardia.  More importantly, they are fast regardless of the patient's situation.  Sinus tachycardia almost always is reacting to the patient's situation.  For instance, a 22-year-old woman resting in a chair with a heart rate of 150 is likely to have an SVT.  A 22-year-old woman who is running in a 10 k marathon race and has a heart rate of 160 is responding appropriately to an increased need for oxygen and nutrients to her cells. Sinus tachycardia will ususally be 160 or less, and have an obvious reason for being, such as fever, pain, anxiety, exercise, hypovolemia, hypoxia, or drugs.  Unfortunately, many beginning students are told that any narrow-complex tachycardia with a rate of 150 or less is sinus, and over 150 is SVT. While they may be right most of the time, or on the written test they are about to take, this rule should not be applied in "real life".  Sinus rhythms can go over 150, and SVTs can be slower than 150.  So, what other clues should we be teaching beginners?

Consider the clinical situation    Look for an obvious cause for sinus tachycardia.  If none is found, strongly consider SVT.  Remember that pediatric patients have faster heart rates, especially infants.  If the strip is on a test, with no clinical information, consider these:

Dawn's picture

ECG Basics: Sinus Tachycardia, Peaked T Waves, and Baseline Artifact

This strip offers several good teaching opportunities.  If it were a 12-lead ECG, no doubt it would be a bonanza!  First, there is sinus tachycardia at a rate of about 138 per minute.  The P waves are all alike and regular.  The T waves are tall and narrow, with a sharp peak.  This is often a transient sign of hyperkalemia, and should be investigated with serum electrolyte tests and with a 12-lead ECG.  In addition, the baseline shows a wandering type of artifact.  This is due to the patient's deep breathing, and the fact that the arm electrodes were placed on the chest.  This patient was a diabetic in ketoacidosis with hyperkalemia. 

Dawn's picture

ECG Basics: Atrial Fibrillation With A Rapid Ventricular Response

This ECG rhythm strip has all the hallmarks of atrial fibrillation:  the rhythm is irregularly irregular and there are no P waves.  The rate is about 150 beats per minute. There is no P wave because the atria are being irregularly depolarized by many ectopic pacemakers at once, causing the atria to "quiver".  This patient has new-onset atrial fib, and has been medicated with a calcium channel blocker.  The rate shows signs of slowing, but has not reached the target rate for this patient of less than 80 bpm.

At the onset of atrial fib, the rate is usually fast, because the AV node is being bombarded by numerous impulses from the atria.  The impulses arrive irregularly, and with different "strengths".  The AV node conducts as many impulses as it is able to, usually resulting in a rate over 110-120 bpm.  Medications can affect the rate, of course, and we use medications to slow AV conduction and allow a more normal heart rate.  

There are many methods of correcting atrial fib, not always with permanent success. Some patients tolerate this rhythm well as long as the rate is kept in check.  But others suffer a loss of cardiac output due to the loss of "atrial kick", which is the forceful filling of the ventricles by the contracting atria.  This loss of cardiac output can severely impair some people, making it necessary to try to convert the atrial fibrillation.  In addition, people living with atrial fib must be anticoagulated, as the loss of forceful emptying of the atria can cause collections of blood clots which can break free and embolize.

Pages

All our content is FREE & COPYRIGHT FREE for non-commercial use

Please be courteous and leave any watermark or author attribution on content you reproduce.